Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present momentum resolved covariance measurements of entangled electronic-nuclear wave packets created and probed with octave spanning phaselocked ultrafast pulses. We launch vibrational wave packets on multiple electronic states via multiphoton absorption, and probe these wave packets via strong field double ionization using a second phaselocked pulse. Momentum resolved covariance mapping of the fragment ions highlights the nuclear motion, while measurements of the yield as a function of the relative phase between pump and probe pulses highlight the electronic coherence. The combined measurements allow us to directly visualize the entanglement between the electronic and nuclear degrees of freedom and follow the evolution of the complete wavefunction. Published by the American Physical Society2024more » « less
-
We present a simple approach to characterize the spatial variation of the gain in microchannel plate (MCP) coupled to phosphor detectors using single electron or photon hits. The technique is easy to implement and general enough to be extended to other kinds of detectors. We demonstrate the efficacy of the approach on both laboratory and Monte Carlo generated datasets. Furthermore, we use the approach to measure the variation in gain over time as the MCP is exposed to an increasing number of electrons.more » « less
-
We demonstrate spectral broadening and compression of amplified pulses from a titanium sapphire laser system using an argon-filled stretched, hollow-core fiber and an acousto-optic modulator based pulse-shaper. We characterize the pulses using pulse-shaper assisted collinear frequency resolved optical gating, pulse-shaper assisted D-scans, and D-scans using a variable path length water cell. The different compression and characterization approaches consistently compress the pulses down to < 6 fs, less than ∼1 fs from the transform limit. We discuss prospects for pulse shape spectroscopy with these broadband pulses, given our control over the spectral amplitude and phase.more » « less
An official website of the United States government
